Characterizing complexity classes with boolean theories extensions

GT SCALP 2023

November 29, 2023

Damiano Mazza, & Baptiste Chanus

Descriptive complexity: languages and computations

Logical description

- Finite structures over finite signatures
- Logical ressources (higher order quantifiers, operators)

Decision algorithm

- Models of computations (Turing machines, circuits)
- Computational ressources (Time, space)

Descriptive complexity: languages and computations

Logical description

- Finite structures over finite signatures
- Logical ressources (higher order quantifiers, operators)

Decision algorithm

- Models of computations (Turing machines, circuits)
- Computational ressources (Time, space)

Descriptive complexity

$$x \models F \iff x \in L$$

Ex: Palindromes

Our approach what's different ?

Logical description Boolean theories

- Finite models of <u>first order</u> finite theories (adding axioms to signatures)
- Logical ressources (higher order quantifiers, operators) sorts, relations

Boolean Theories

Definition

A Boolean theory $\ensuremath{\mathbb{T}}$ is a triple

$$(\operatorname{Sort}(\mathbb{T}), \operatorname{Rel}(\mathbb{T}), \operatorname{Ax}(\mathbb{T}))$$

A Boolean theory $\mathbb T$ is **finite** if $Sort(\mathbb T),\,Rel(\mathbb T)$ and $Ax(\mathbb T)$ are all finite.

4

Example: Str

Definition

$$Sort(Str) = \{N\}$$

$$Rel(Str) = \{ \le \rightarrowtail N \times N, isOne \rightarrowtail N \}$$

$$Ax(Str) = \{ " \le is a total order" \}$$

5

Other example : $\mathbb{G}rph$

Definition

$$\begin{aligned} & \operatorname{Sort}(\operatorname{\mathbb{G}rph}) = \{V\} \\ & \operatorname{Rel}(\operatorname{\mathbb{G}rph}) = \{E \rightarrowtail V \times V\} \\ & \operatorname{Ax}(\operatorname{\mathbb{G}rph}) = \emptyset \end{aligned}$$

Extension of a theory

Definition

 \mathbb{T} extends \mathbb{T}' iff :

- $\operatorname{Sort}(\mathbb{T}') \subseteq \operatorname{Sort}(\mathbb{T})$
- $\operatorname{Rel}(\mathbb{T}') \subseteq \operatorname{Rel}(\mathbb{T})$
- $Ax(\mathbb{T}') \subseteq Ax(\mathbb{T})$

Definition

 \mathbb{T} is a relational extension of \mathbb{T}' iff :

- \mathbb{T}' is an extension of \mathbb{T}
- $\operatorname{Sort}(\mathbb{T}') = \operatorname{Sort}(\mathbb{T})$

Why?

What is different? What isn't?

Why?

What is different? What isn't?

Fagin's Theorem (our version)

Theorem (Fagin (Boolean sauce))

NP is equal to the relational extensions of Str.

Sketch of the proof

Logical description

Given a NP Turing machine:

- Give a theory such that all its finite models can project to accepting runs of the machine
- Is this a relational extension of Str ? (without detail)

Decision algorithm

Given a relational extension of $\mathbb{S}\mathrm{tr}$

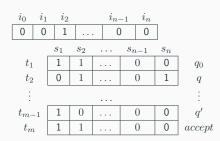
- Give a Turing machine whose accepting runs are models of the theory
- Is this a NP Turing machine?

Extending strings with table of symbols

$$\mathbb{S}\mathrm{tr} + \mathbf{S}\mathsf{,T} + \mathrm{Symb}_0, \mathrm{Symb}_1, \mathrm{Symb}_{\square} \rightarrowtail T \times S + (\mathrm{State}_q) \rightarrowtail T$$

Axioms:

- S, T are finite chains (equipped with successors and max)
- $\begin{tabular}{ll} $\operatorname{Symb}_{\{0,1,\square\}}$ form a function from $T\times S$ to $$\{0,1,\square\}$ and $(State_q)$ from T to Q \\ \end{tabular}$
- State q₀ and blank symbols
 □ on work tape at time 0.
 State accept at final state

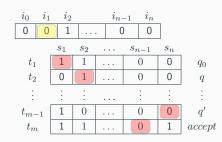


Adding heads

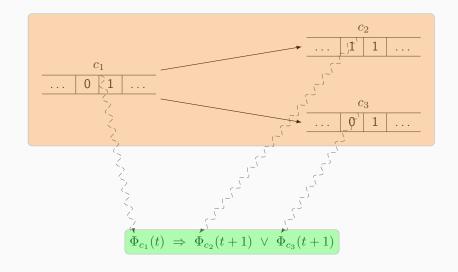
$$\mathbb{S}\mathrm{tr} + \mathbf{S}\mathsf{,T} + \mathrm{Symb}_{\{0,1,\square\}}, (\mathrm{State}_q) + \mathrm{wHead} \rightarrowtail T \times S + \mathrm{iHead} \rightarrowtail T \times N$$

Axioms:

- wHead (resp. iHead) are functions from T to S (resp. N)
- wHead and iHead don't move more than one case
- The work tape is unchanged at positions where the head is not found



Axioms for the transitions



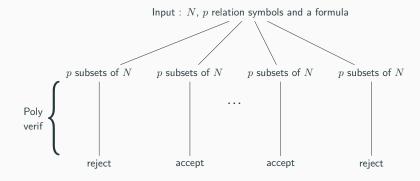
Polynomiality

All Turing mahines are represented!

But #T is exactly the time of the Turing machine

Computing a model of a theory

A drawing worths more than a thousand word



Example: $\mathbb{G}rph$ and 3-colorability

$$\mathbb{G}rph + C_1, C_2, C_3 + Ax$$

Axioms:

- $C_1 \vee C_2 \vee C_3$
- For $i \neq j, C_i \land C_j \Rightarrow \bot$
- $E(x,y) \wedge C_i(x) \wedge C_j(y) \Rightarrow i \neq j$

Further results

- Polynomial Hierarchy
- PSPACE
- NL
- Logarithmic Hierarchy