Complexity : lost in abstraction ?

PAC 2024
December 17, 2024

Baptiste Chanus

PN s @




A really concrete motivation

From : what computations can we effectively carry 7
To : What problems can we effectively solve ?



1. Complexity theory : a pile of
abstractions



Definition of RAM

—[ Definition (RAM machine) }

A RAM machine is a list of I of IV + 1 instructions, two registers r and

w containing positive integers, an input list of values i = (i0y- -y 0m)
and a list of registers & = (xo,...,2n,...) containing infinitely many
Zeros.

An instruction can be :
= An operation : a substitution z := g * 21 where * € {A,V} or
T i= —xg.
= A branch(l) : if 2o = 0 then goto instruction [; else goto next

instruction.

= A copy(x,, ) : the content of the register x, is updated with
the value of z,,.
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Complexity : abstraction again

—( Definition (Decision Problem)}

A decision problem L (on string) is a set of strings on an alphabet X.
We write L C X.

—[ Definition (Complexity of a Problem) }

The complexity of a problem is the complexity that uses the least
amount of (a given) ressources to solve the problem.

Remark (Complexity Class)

A complexity class is a set of problems that are solvable in bounded
ressources (time, space...) in a given model of computations (Turing
Machines, RAM).



2. Descriptive complexity :
diving deeper



Descriptive complexity : abstraction’s final boss ?

Remark (Machine-less complexity)
Could we find a way to define complexity independantly of any model
of computation ?



Descriptive complexity : languages and computations

Logical description
&l e Decision algorithm

= Finite structures over finite )
= Models of computations

signatures . . o
(Turing machines, circuits)
= Logical ressources for .
= Computational ressources

expressivity (higher order .
. (Time, space)
quantifiers, operators)



Descriptive complexity : languages and computations

Logical description
&l e Decision algorithm

= Finite structures over finite )
= Models of computations

signatures . . o
(Turing machines, circuits)
= Logical ressources for )
= Computational ressources

expressivity (higher order )
. (Time, space)
quantifiers, operators)

Descriptive complexity

xEF < z€l



Descriptive complexity : languages and computations

Logical description
&l e Decision algorithm

= Finite structures over finite )
= Models of computations

signatures . . —_—
2 (Turing machines, circuits)

= Logical ressources for .
= Computational ressources

expressivity (higher order .
. (Time, space)
quantifiers, operators)

Descriptive complexity

/—>Input
?EF <+— erL

)

Logical description Computational description



Boolean Theories

—{ Definition

A Boolean theory T is a triple

(Sort(T), Rel(T), Ax(T))

A Boolean theory T is finite if Sort(T), Rel(T) and Ax(T) are all finite.
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Example : Str

—{ Definition

Sort(Str) = {N}
Rel(Str) = {<— N x N, X — N}
Ax(Str) = {“ < is a total order}
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Other example : Grph

—{ Definition

Sort(Grph) = {V'}
Rel(Grph) = {F — V x V}
Ax(Grph) = 0
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Extension of a theory

—{ Definition

T extends T iff :
= Sort(T") C Sort(T)
= Rel(T’) C Rel(T)
= Ax(T') C Ax(T)

—{ Definition

T is a relational extension of T’ iff :

= T’ is an extension of T
= Sort(T”) = Sort(T)

13



Extension of a theory

—{ Definition

T extends T iff :
= Sort(T") C Sort(T)
= Rel(T’) C Rel(T)
= Ax(T') C Ax(T)

—{ Definition

T is a relational extension of T’ iff :

= T’ is an extension of T
= Sort(T”) = Sort(T)

Note that there is a natural notion of projection from the extension to
the base theory. (i.e. the one that forgets the extra information)
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A drawing is worth more than a thousand word
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A drawing is worth more than a thousand word
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A drawing is worth more than a thousand word
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A drawing is worth more than a thousand word
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A drawing is worth more than a thousand word
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What is that ?

14



A drawing is worth more than a thousand word
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Data specifications

14



A drawing is worth more than a thousand word
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A drawing is worth more than a thousand word

represents
14



A drawing is worth more than a thousand word

Spec F[Str] xX=
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Fagin’s Theorem (our version)

Theorem (Fagin (Boolean sauce))}
NP is equal to the relational extensions of Str.
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3. Abstracting again ?




Why not after all ?

—[ Definition (RAM machine) }

A RAM machine on real numbers is a list of I of N -+ 1 instructions,
two registers r and w containing positive integers, an input list of values
i = (ig,...,im) and a list of registers & = (2, ..., Zn,...) containing
infinitely many zeros.
An instruction can be :
= An operation : a substitution zg := x¢ * 1 where
x e {+,—,%x,/}.
= A branch(l) : if zyp = 0 then goto instruction [; else goto next
instruction.
= A copy(x,, ) : the content of the register x, is updated with
the value of z,,.
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Why not after all ?

Spec R[Str]

L We modify the base ring
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Theorem

The Fagin’s theorem still holds over Strg.
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Is this loss ?

Our computers cannot manipulate real numbers.
We were supposed to talk about effective computations !
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Remark
Could we use the concept of computation outside the scope of engi-
neering ?
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Examples in physics

@ The Second Law of Quantum Complexity. Brown, Adam R., et Leonard
Susskind. (2018).

Example
A relation between the volume of a black hole and quantum circuit
complexity.
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Examples in physics

@ MIP*=RE. Ji, Zhengfeng, Anand Natarajan, Thomas Vidick, John Wright, et
Henry Yuen (2022).

Example
Explicit constructions of counter-examples to Connes’ Embedding Con-
jecture using a computability result.
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Examples in physics

@ MIP*=RE. Ji, Zhengfeng, Anand Natarajan, Thomas Vidick, John Wright, et
Henry Yuen (2022).

Example

Explicit constructions of counter-examples to Connes’ Embedding Con-
jecture using a computability result.

Remark
Computability is complexity with infinite ressources...
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Could complexity be used in other disciplines ?
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