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Descriptive complexity

Descriptive Complexity. Immerman (1999)

Example (Immerman 99)
For another example, consider the binary string w = ”01101”. We can
code w as the structure Aw = ({0, 1, . . . , 4},≤, {1, 2, 4}) of vocabulary
τs. Here ≤ represents the usual ordering on 0, 1, . . . , 4. Relation Sw =
{1, 2, 4} represents the positions where w is one.
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External axiomatization
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Descriptive complexity

Descriptive Complexity. Immerman (1999)

Example (Immerman 99)
Second-order logic consists of first-order logic plus new relation variables
over which we may quantify. For example, the formula (∀Ar)φ means
that for all choices of r-ary relation A, φ holds.
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Second-order logic consists of first-order logic plus new relation variables
over which we may quantify. For example, the formula (∀Ar)φ means
that for all choices of r-ary relation A, φ holds.

External to the language

3



1. Boolean Theories



Boolean Theories

Definition

A Boolean theory T is a triple

(Sort(T),Rel(T),Ax(T))

A Boolean theory T is finite if Sort(T), Rel(T) and Ax(T) are all finite.
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Example : Str

Definition

Sort(Str) = {N}
Rel(Str) = {≤� N ×N, isOne � N}
Ax(Str) = {“ ≤ is a total order′′}

(N,≤) : a ≤ b ≤ c ≤ d
↑ ↑ ↑ ↑

isOne : 0 1 0 1
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Extension of a theory

Definition
T extends T′ iff :

• Sort(T′) ⊆ Sort(T)
• Rel(T′) ⊆ Rel(T)
• Ax(T′) ⊆ Ax(T)

Definition
T is a relational extension of T′ iff :

• T′ is an extension of T
• Sort(T′) = Sort(T)

6



Fagin’s Theorem (our version)

Theorem (Fagin (Boolean sauce))
NP is equal to the relational extensions of Str.
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Extending strings with table of symbols

Str + S,T + Symb0,Symb1,Symb� � T × S + (Stateq) � T

Axioms :
• S, T are finite chains

(equipped with successors
and max)

• Symb{0,1,�} form a
function from T × S to
{0, 1,�} and (Stateq) from
T to Q

• State q0 and blank symbols
� on work tape at time 0.
State accept at final state

i0 i1 i2 in−1 in

0 0 1 . . . 0 0
s1 s2 . . . sn−1 sn

t1 1 1 . . . 0 0 q0

t2 0 1 . . . 0 1 q
... . . .

...
tm−1 1 0 . . . 0 0 q′

tm 1 1 . . . 0 0 accept
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Adding heads

Str + S,T + Symb{0,1,�}, (Stateq) + wHead � T × S + iHead � T ×N

Axioms :
• wHead (resp. iHead) are

functions from T to S
(resp. N)

• wHead and iHead don’t
move more than one case

• The work tape is unchanged
at positions where the head
is not found

i0 i1 i2 in−1 in

0 0 1 . . . 0 0
s1 s2 . . . sn−1 sn

t1 1 1 . . . 0 0 q0

t2 0 1 . . . 0 0 q
...

...
... . . .

...
...

...
tm−1 1 0 . . . 0 0 q′

tm 1 1 . . . 0 1 accept
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Axioms for the transitions

. . . 0 1 . . .
c1

. . . 1 1 . . .
c2

. . . 0 1 . . .
c3

Φc1(t) ⇒ Φc2(t+ 1) ∨ Φc3(t+ 1)
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Polynomiality

All Turing mahines are represented !

But #T is exactly the time of the Turing machine.

If #T = poly(#N) we can make the extension relational.
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P class

Theorem (Grädel (Boolean sauce))
P is equal to the Horn extensions of Str.
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2. Classes of morphisms



Quick definitions

Definition (Category)
C a category is a collection of :

• Objects : X,Y, . . .
• Morphisms : f : X → Y, . . .

With an associative composition between morphisms and identity mor-
phisms for each object that are neutral for the composition.

Definition (Functor)
A functor F : C → D is a mapping of objects and morphisms of C to
objects and morphisms of D that preserves composition and identities.
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From theories to categories

x

x

x

x

BoolTh BoolCatF [_]

F [Sort(T); Rel(T)]/ < Ax(T) >

F [Sort(S); Rel(S)]/ < Ax(S) >

T

S
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From theories to categories

x

x

x

x

BoolTh

T

S

BoolCatop
:= Data

SpecF [_]

Spec F [Sort(T); Rel(T)]/ < Ax(T) >

Spec F [Sort(S); Rel(S)]/ < Ax(S) >
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Characterization ?
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Fagin’s Theorem (our version)

Theorem (Fagin (in Data))
A decision problem L ⊆ {0, 1}∗ is in NP iff it is expressible by a relational
morphism on Str.

Theorem (Grädel (in Data))
A decision problem L ⊆ {0, 1}∗ is in P iff it is expressible by a Horn
morphism on Str.
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3. Proof of concept



Characterization of P/poly

Theorem (P/poly)
A decision problem L ⊆ {0, 1}∗ is in P/poly iff it is expressible by a
bounded Horn morphism of finite type on Str.
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Finite type and presentation

Logical description

F [A1, . . . , An;R1, . . . , Rm]/ < Ax >

Finite type

Algebraic geometry

R[X1, . . . , Xn]/I

Finite presentation

Finite Finitely generated
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Bounded morphism

Definition (Bounded morphism)
f : X → S is bounded if there exists presentations S ⊆rel S′ ⊆ax

(Si)i∈NSort(S) with X = SpecF [S′], S = SpecF [S] and m ∈ N such
that :

∀i, |Ax(S′i)\Ax(S′)|≤ m

X0 . . . Xi

X

S

ax ax
ax

rel
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Conclusion

Theorem (P/poly)
A decision problem L ⊆ {0, 1}∗ is in P/poly iff it is expressible by a
bounded Horn morphism of finite type on Str.

No explicit reference to a polynom

• Can we find natural purely semantical characterizations ?
• Can the analogy with algebraic geometry give new tools to

understand logical characterizations of complexity classes ?
• Can we generalize to theories other than Str ? (order independent

characterizations)

Thank you !
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