Characterizing complexity classes with categorical logic

Complexity Days 2023
December 12, 2023

Damiano Mazza, & Baptiste Chanus

Descriptive Complexity. Immerman (1999)

Example (Immerman 99)

For another example, consider the binary string w="01101". We can code w as the structure $A^w=(\{0,1,\ldots,4\},\leq,\{1,2,4\})$ of vocabulary τ_s . Here \leq represents the usual ordering on $0,1,\ldots,4$. Relation $S^w=\{1,2,4\}$ represents the positions where w is one.

Descriptive Complexity. Immerman (1999)

Example (Immerman 99)

For another example, consider the binary string w="01101". We can code w as the structure $A^w=(\{0,1,\ldots,4\},\leq,\{1,2,4\})$ of vocabulary τ_s . Here \leq represents the usual ordering on $0,1,\ldots,4$. Relation $S^w=\{1,2,4\}$ represents the positions where w is one.

External axiomatization

Descriptive Complexity. Immerman (1999)

Example (Immerman 99)

Second-order logic consists of first-order logic plus new relation variables over which we may quantify. For example, the formula $(\forall A^r)\phi$ means that for all choices of r-ary relation $A, \ \phi$ holds.

Descriptive Complexity. Immerman (1999)

Example (Immerman 99)

Second-order logic consists of first-order logic plus new relation variables over which we may quantify. For example, the formula $(\forall A^r)\phi$ means that for all choices of r-ary relation A, ϕ holds.

External to the language

1. Boolean Theories

Boolean Theories

Definition

A Boolean theory $\ensuremath{\mathbb{T}}$ is a triple

$$(\operatorname{Sort}(\mathbb{T}), \operatorname{Rel}(\mathbb{T}), \operatorname{Ax}(\mathbb{T}))$$

A Boolean theory $\mathbb T$ is **finite** if $Sort(\mathbb T),\,Rel(\mathbb T)$ and $Ax(\mathbb T)$ are all finite.

4

Example: Str

Definition

$$Sort(Str) = \{N\}$$

$$Rel(Str) = \{ \le \rightarrowtail N \times N, isOne \rightarrowtail N \}$$

$$Ax(Str) = \{ " \le is a total order" \}$$

5

Extension of a theory

Definition

 \mathbb{T} extends \mathbb{T}' iff :

- $\operatorname{Sort}(\mathbb{T}') \subseteq \operatorname{Sort}(\mathbb{T})$
- $\operatorname{Rel}(\mathbb{T}') \subseteq \operatorname{Rel}(\mathbb{T})$
- $Ax(\mathbb{T}') \subseteq Ax(\mathbb{T})$

Definition

 $\mathbb T$ is a relational extension of $\mathbb T'$ iff :

- \mathbb{T}' is an extension of \mathbb{T}
- $\operatorname{Sort}(\mathbb{T}') = \operatorname{Sort}(\mathbb{T})$

Fagin's Theorem (our version)

Theorem (Fagin (Boolean sauce))

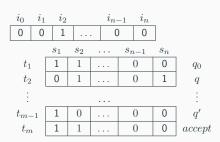
NP is equal to the relational extensions of Str.

Extending strings with table of symbols

$$\mathbb{S}\mathrm{tr} + \mathbf{S}, \mathbf{T} + \mathrm{Symb}_0, \mathrm{Symb}_1, \mathrm{Symb}_{\square} \rightarrowtail T \times S + (\mathrm{State}_q) \rightarrowtail T$$

Axioms:

- S, T are finite chains (equipped with successors and max)
- $\begin{tabular}{ll} $\operatorname{Symb}_{\{0,1,\square\}}$ form a function from $T\times S$ to $$\{0,1,\square\}$ and $(State_q)$ from T to Q \\ \end{tabular}$
- State q₀ and blank symbols
 □ on work tape at time 0.
 State accept at final state

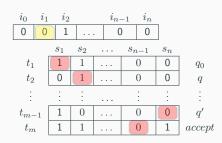


Adding heads

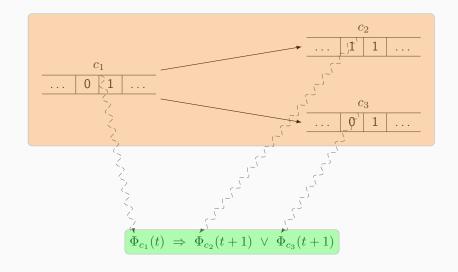
$$\mathbb{S}\mathrm{tr} + \mathbf{S}\mathsf{,T} + \mathrm{Symb}_{\{0,1,\square\}}, (\mathrm{State}_q) + \mathrm{wHead} \rightarrowtail T \times S + \mathrm{iHead} \rightarrowtail T \times N$$

Axioms:

- wHead (resp. iHead) are functions from T to S (resp. N)
- wHead and iHead don't move more than one case
- The work tape is unchanged at positions where the head is not found



Axioms for the transitions



Polynomiality

All Turing mahines are represented!

But #T is exactly the time of the Turing machine. If $\#T = \operatorname{poly}(\#N)$ we can make the extension relational.

P class

Theorem (Grädel (Boolean sauce))

P is equal to the Horn extensions of Str.

2. Classes of morphisms

Quick definitions

Definition (Category)

 $\mathcal C$ a category is a collection of :

- Objects : X, Y, \dots
- Morphisms : $f: X \to Y, \dots$

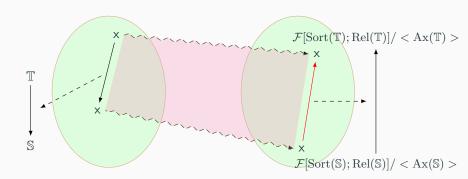
With an associative composition between morphisms and identity morphisms for each object that are neutral for the composition.

Definition (Functor)

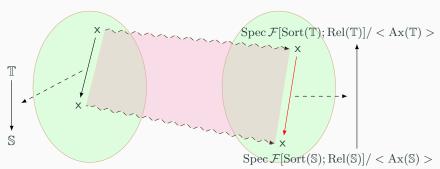
A functor $F:\mathcal{C}\to\mathcal{D}$ is a mapping of objects and morphisms of \mathcal{C} to objects and morphisms of \mathcal{D} that preserves composition and identities.

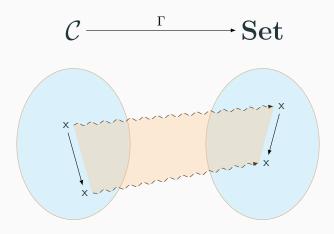
From theories to categories

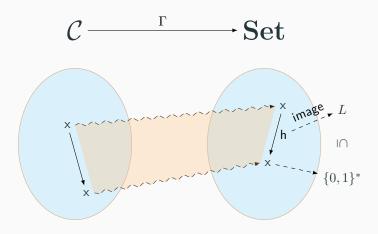
$BoolTh \xrightarrow{\mathcal{F}[_]} BoolCat$

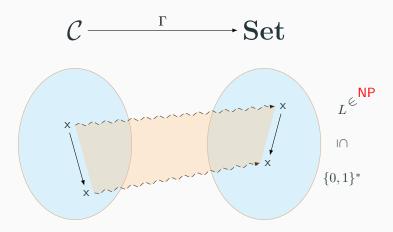


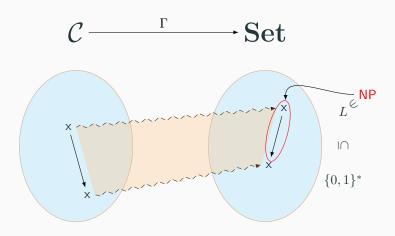
From theories to categories

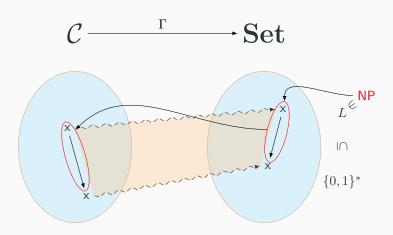


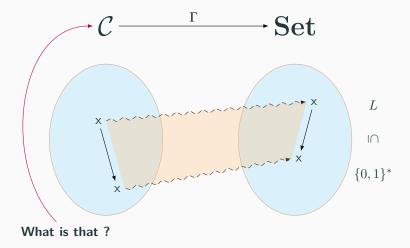


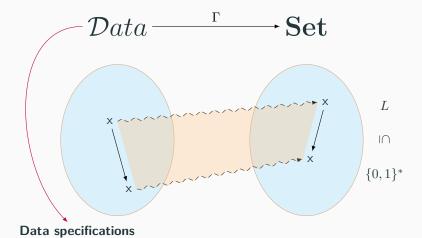


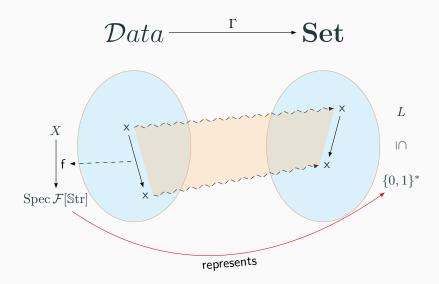


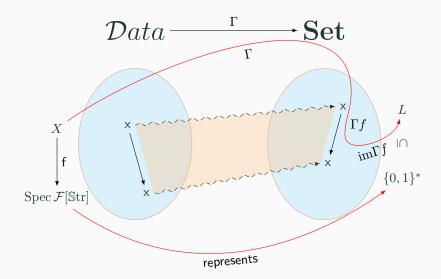


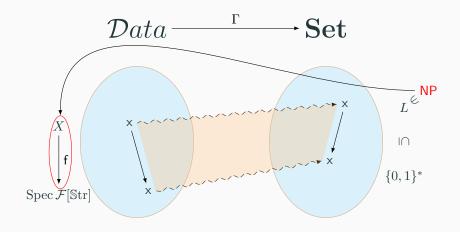












Fagin's Theorem (our version)

Theorem (Fagin (in $\mathcal{D}ata$))

A decision problem $L\subseteq\{0,1\}*$ is in NP iff it is expressible by a relational morphism on Str.

Theorem (Grädel (in $\mathcal{D}ata$))

A decision problem $L\subseteq\{0,1\}*$ is in P iff it is expressible by a Horn morphism on Str.

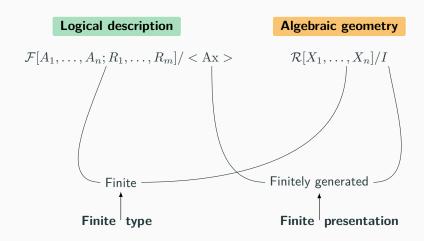
3. Proof of concept

Characterization of P/poly

Theorem (P/poly)

A decision problem $L\subseteq\{0,1\}^*$ is in P/poly iff it is expressible by a bounded Horn morphism of finite type on Str.

Finite type and presentation

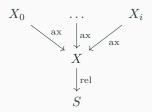


Bounded morphism

Definition (Bounded morphism)

 $f: X \to S$ is bounded if there exists presentations $\mathbb{S} \subseteq_{\mathrm{rel}} \mathbb{S}' \subseteq_{\mathrm{ax}} (\mathbb{S}_i)_{i \in \mathbb{N}^{\mathrm{Sort}(\mathbb{S})}}$ with $X = \mathrm{Spec}\,\mathcal{F}[\mathbb{S}'], S = \mathrm{Spec}\,\mathcal{F}[\mathbb{S}]$ and $m \in \mathbb{N}$ such that :

$$\forall i, |\operatorname{Ax}(\mathbb{S}'_i)\backslash \operatorname{Ax}(\mathbb{S}')| \leq m$$



Conclusion

Theorem (P/poly)

A decision problem $L\subseteq\{0,1\}^*$ is in P/poly iff it is expressible by a bounded Horn morphism of finite type on Str.

No explicit reference to a polynom

- Can we find natural purely semantical characterizations?
- Can the analogy with algebraic geometry give new tools to understand logical characterizations of complexity classes ?
- \bullet Can we generalize to theories other than $\mathbb{S}\mathrm{tr}$? (order independent characterizations)

Thank you!