Characterizing complexity classes with
categorical logic

Complexity Days 2023
December 12, 2023

Damiano Mazza, & Baptiste Chanus

LIPN - 505086




Descriptive complexity

[d Descriptive Complexity. Immerman (1999)

Example (Immerman 99)}

For another example, consider the binary string w = ”01101”. We can
code w as the structure A* = ({0,1,...,4}, <,{1,2,4}) of vocabulary
7s. Here < represents the usual ordering on 0,1,...,4. Relation S* =
{1,2,4} represents the positions where w is one.




Descriptive complexity

[d Descriptive Complexity. Immerman (1999)

Example (Immerman 99)}

For another example, consider the binary string w = ”01101”. We can
code w as the structure A* = ({0,1,...,4}, <,{1,2,4}) of vocabulary
7s. Here < represents the usual ordering on 0,1,...,4. Relation S* =

{1,2,4} represé\nts the positions where w is one.

\~ External axiomatization




Descriptive complexity

[d Descriptive Complexity. Immerman (1999)

Example (Immerman 99))

Second-order logic consists of first-order logic plus new relation variables
over which we may quantify. For example, the formula (VA")¢ means
that for all choices of r-ary relation A, ¢ holds.
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External to the language




1. Boolean Theories




Boolean Theories

—{ Definition

A Boolean theory T is a triple

(Sort(T), Rel(T), Ax(T))

A Boolean theory T is finite if Sort(T), Rel(T) and Ax(T) are all finite.




Example : Str

—{ Definition

Sort(Str) = {N}
Rel(Str) = {< — N X N,isOne — N}
Ax(Str) = {“ < is a total order}

(Nv S) o a < b £ ¢ £ d
/l\
isOne : 0 1 0 1



Extension of a theory

—{ Definition

T extends T’ iff :
= Sort(T") C Sort(T)
= Rel(T’) C Rel(T)
» Ax(T’) C Ax(T)

—{ Definition

T is a relational extension of T’ iff :

= T/ is an extension of T
= Sort(T’) = Sort(T)




Fagin’s Theorem (our version)

Theorem (Fagin (Boolean sauce))}
NP is equal to the relational extensions of Str.




Extending strings with table of symbols

Str + S, T + Symb,, Symb,, Symbg — T x S + (State,) — T

Axioms :

= S, T are finite chains

(equipped with successors G0 i1 s i1
and max) [oJoJ1[...] 0o Jo]

= Symbgg; gy form a y 511 512 .' 5"0—1 8(; .
function from T x S to t [0 1. 0 1 g
{0,1,0} and (State,) from : :
T toQ tma[1]0]...] 0 O] ¢

= State ¢p and blank symbols b 1] L] ] O ] O |accept

0 on work tape at time 0.
State accept at final state



Adding heads

Str +S,T + Symby, ; 0y, (State;) + wHead — T' x S + iHead — T' x N

Axioms :
= wHead (resp. iHead) are Qo i1 da fn-1 in
functions from T to S [ofoJ1]..[ o Jo]
(resp. N) S1 52 Sn—1 Sn
t1 1 1] ... 0 0 qo
= wHead and iHead don’t to olf1]... 0 0 q
move more than one case . s 8 : : :
= The work tape is unchanged tm-1 | 110 ... 0 0 ¢
Gz 101 ... 0 1 | accept

at positions where the head
is not found



Axioms for the transitions

)
\
S

>
D, (t) = P, (t+1) V O (t+1)
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Polynomiality

All Turing mahines are represented !

But #T is exactly the time of the Turing machine.
If #T = poly(#N) we can make the extension relational.
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P class

is equal to the Horn extensions of Str.

’—[ Theorem (Gradel (Boolean sauce))}
P
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2. Classes of morphisms




Quick definitions

—[ Definition (Category) }
C a category is a collection of :

= Objects : X,Y,...
= Morphisms: f: X — Y, ...

With an associative composition between morphisms and identity mor-

phisms for each object that are neutral for the composition.

—( Definition (Functor) }
A functor F : C — D is a mapping of objects and morphisms of C to

objects and morphisms of D that preserves composition and identities.
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From theories to categories

T[]
BoolTh BoolCat
o F[Sort(T); Rel(T)]/ < Ax(T) >
/////// o % y
']I‘ ///
A/// X —ee ) T -
' ey

F[Sort(S); Rel(S)]/ < Ax(S) >
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From theories to categories

Spec F[_
BoolTh - BoolCat” . o,
X . Specf[Sort( ); Rel(T)]/ < Ax(T) >
\\\\\\\\ - )
']I‘ ///
A/// X —ee ) T s
;i /V\’\’\/\,\,\‘ !

Spec F[Sert(S); Rel(S)]/ < Ax(S) >
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Characterization ?

C - Set
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Characterization ?
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Characterization ?

C - -Set
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Characterization ?
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Characterization ?

C 2 -Set
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What is that ?



Characterization ?

Data 2 -Set

{0,1}*

Data specifications



Characterization ?

Data 2 -Set

represents
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Characterization ?

Data 2 -Set

represents
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Characterization ?

Data - -Set

Spec F[Str] X=
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Fagin’s Theorem (our version)

—( Theorem (Fagin (in Data)) }
A decision problem L C {0, 1} isin NP iff it is expressible by a relational

morphism on Str.

—(Theorem (Gradel (in Data))}
A decision problem L C {0,1}x is in P iff it is expressible by a Horn

morphism on Str.
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3. Proof of concept




Characterization of P/poly

Theorem (P/poly)]
A decision problem L C {0,1}* is in P/poly iff it is expressible by a

bounded Horn morphism of finite type on Str.
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Finite type and presentation

Logical description Algebraic geometry
FlA1, ..., An; Ry, .., Rp]/ < Ax > RIX1,...,Xn]/T
Finite Finitely generated
Finite I type Finite T presentation



Bounded morphism

Definition (Bounded morphism)}
f : X — S is bounded if there exists presentations S C.q S’ Cax
(Si)iensort® with X = Spec F[S'], S = Spec F[S] and m € N such
that :

Vi, |Ax(S;)\Ax(S")|< m
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Conclusion

Theorem (P/poly)]
A decision problem L C {0,1}* is in P/poly iff it is expressible by a
bounded Horn morphism of finite type on Str.

-

No explicit reference to a polynom

= Can we find natural purely semantical characterizations ?

= Can the analogy with algebraic geometry give new tools to
understand logical characterizations of complexity classes ?

= Can we generalize to theories other than Str ? (order independent

characterizations)

Thank you !
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