An introduction to descriptive complexity

IHPST 2024
November 15, 2024

Damiano Mazza, & Baptiste Chanus

LIPN - 50586

Descriptive complexity : languages and computations

Logical description
&l e Decision algorithm

= Finite structures over finite)
= Models of computations

signatures . . o
(Turing machines, circuits)
= Logical ressources for .
= Computational ressources

expressivity (higher order .
. (Time, space)
quantifiers, operators)

Descriptive complexity : languages and computations

Logical description
&l e Decision algorithm

= Finite structures over finite)
= Models of computations

signatures . . o
(Turing machines, circuits)
= Logical ressources for)
= Computational ressources

expressivity (higher order)
. (Time, space)
quantifiers, operators)

Descriptive complexity

xEF < z€l

Descriptive complexity : languages and computations

Logical description
&l e Decision algorithm

= Finite structures over finite)
= Models of computations

signatures . . —_—
2 (Turing machines, circuits)

= Logical ressources for)
= Computational ressources

expressivity (higher order)
. (Time, space)
quantifiers, operators)

Descriptive complexity

/—>Input
?EF <+— erL

)

Logical description Computational description

Complexity Class

—{_Definition
A problem L (on string) is a set of strings on an alphabet X.
We write L C X.

—{ Definition

A complexity class is a set of problems that are solvable in bounded

ressources (time, space...) in a given model of computations (Turing
Machines).

Our approach what’s different ?

Logieal-deseription Boolean theories

= Finite models of sorted first order finite theories (adding axioms to
signatures)

= Logical ressources {higher-ordergtantifiers—operaters) sorts and

relations

Boolean Theories

—{ Definition

A Boolean theory T is a triple

(Sort(T), Rel(T), Ax(T))

A Boolean theory T is finite if Sort(T), Rel(T) and Ax(T) are all finite.

Example : Str

—{ Definition

Sort(Str) = {N}
Rel(Str) = {< — N X N,isOne — N}
Ax(Str) = {“ < is a total order}

(Nv S) o a < b £ ¢ £ d
/l\
isOne : 0 1 0 1

Other example : Grph

—{ Definition

Sort(Grph) = {V'}
Rel(Grph) = {F — V x V}
Ax(Grph) = 0

Extension of a theory

—{ Definition

T extends T iff :
= Sort(T") C Sort(T)
= Rel(T’) C Rel(T)
= Ax(T') C Ax(T)

—{ Definition

T is a relational extension of T’ iff :

= T’ is an extension of T
= Sort(T”) = Sort(T)

Extension of a theory

—{ Definition

T extends T iff :
= Sort(T") C Sort(T)
= Rel(T’) C Rel(T)
= Ax(T') C Ax(T)

—{ Definition

T is a relational extension of T’ iff :

= T’ is an extension of T
= Sort(T”) = Sort(T)

Note that there is a natural notion of projection from the extension to
the base theory. (i.e. the one that forgets the extra information)

Generic form

Theorem (Generic Form)}

Complexity class C is equal to set of extensions T of Str.

Generic form

Theorem (Generic Form)}

Complexity class C is equal to set of extensions T of Str.
l

What does this mean ?

Generic form

Theorem (Generic Form)}
Complexity class C is equal to set of extensions T of Str.

Logic
g Computation

For every problem p € C and for

For every model m of T there is
every | & € p, we have at leat

a problem p such that ‘& €
one model of T that projects £ - &

if and only m projects onto [z .
onto =z .

10

Fagin’s Theorem (our version)

Theorem (Fagin (Boolean sauce))}
NP is equal to the relational extensions of Str.

11

Sketch of the proof

Logical description

Given a NP Turing machine :

= Give a theory such that all
its finite models can project
to accepting runs of the
machine

= |s this a relational extension
of Str ? (without detail)

Decision algorithm

Given a relational extension of
Str

= Give a Turing machine
whose accepting runs are
models of the theory

= [s this a NP Turing
machine?

12

Logical encoding

Extending strings with table of symbols

Str + S, T + Symb,, Symb,, Symbg — T x S + (State,) — T

Axioms :

= S, T are finite chains

(equipped with successors G0 i1 s i1
and max) [oJoJ1[...] 0o Jo]

= Symbgg; gy form a y 511 512 .' 5"0—1 8(; .
function from T x S to t [0 1. 0 1 g
{0,1,0} and (State,) from : :
T toQ tma[1]0]...] 0 O] ¢

= State ¢p and blank symbols b 1] L]] O] O |accept

0 on work tape at time 0.
State accept at final state

14

Adding heads

Str +S,T + Symby, ; 0y, (State;) + wHead — T' x S + iHead — T' x N

Axioms :
= wHead (resp. iHead) are Qo i1 da fn-1 in
functions from T to S [ofoJ1]..[o Jo]
(resp. N) S1 52 Sn—1 Sn
t1 1 1] ... 0 0 qo
= wHead and iHead don’t to olf1]... 0 0 q
move more than one case . s 8 : : :
= The work tape is unchanged tm-1 | 110 ... 0 0 ¢
Gz 101 ... 0 1 | accept

at positions where the head
is not found

15

Axioms for the transitions

)
\
S

>
D, (t) = P, (t+1) V O (t+1)

16

Polynomiality

All Turing mahines are represented !

But #T is exactly the ' time of the Turing machine

17

Model checking

done fast

18

Computing a model of a theo

Given a relational extension of Str adding R1,..., R, and axioms, we
give a machine M such that its accepting runs are exactly the models of
the extension :

(Input : a model of Str of domain NV

N\ T

_ P subsets of v p subsets of NV p subsets of NV p subsets of N
¢

Poly.
verif. <

reject accept accept reject

19

