
An introduction to descriptive complexity

IHPST 2024
November 15, 2024

Damiano Mazza, & Baptiste Chanus

1

Descriptive complexity : languages and computations

Logical description

• Finite structures over finite
signatures

• Logical ressources for
expressivity (higher order
quantifiers, operators)

Decision algorithm

• Models of computations
(Turing machines, circuits)

• Computational ressources
(Time, space)

Descriptive complexity

x |= F ⇐⇒ x ∈ L

2

Descriptive complexity : languages and computations

Logical description

• Finite structures over finite
signatures

• Logical ressources for
expressivity (higher order
quantifiers, operators)

Decision algorithm

• Models of computations
(Turing machines, circuits)

• Computational ressources
(Time, space)

Descriptive complexity

x |= F ⇐⇒ x ∈ L

2

Descriptive complexity : languages and computations

Logical description

• Finite structures over finite
signatures

• Logical ressources for
expressivity (higher order
quantifiers, operators)

Decision algorithm

• Models of computations
(Turing machines, circuits)

• Computational ressources
(Time, space)

Descriptive complexity

x |= F ⇐⇒ x ∈ L

Logical description Computational description

Input

2

Complexity Class

Definition

A problem L (on string) is a set of strings on an alphabet Σ.
We write L ⊆ Σ.

Definition

A complexity class is a set of problems that are solvable in bounded
ressources (time, space...) in a given model of computations (Turing
Machines).

3

Our approach what’s different ?

Logical description Boolean theories

• Finite models of sorted first order finite theories (adding axioms to
signatures)

• Logical ressources (higher order quantifiers, operators) sorts and
relations

4

Boolean Theories

Definition

A Boolean theory T is a triple

(Sort(T), Rel(T), Ax(T))

A Boolean theory T is finite if Sort(T), Rel(T) and Ax(T) are all finite.

5

Example : Str

Definition

Sort(Str) = {N}
Rel(Str) = {≤� N ×N, isOne � N}
Ax(Str) = {“ ≤ is a total order′′}

(N,≤) : a ≤ b ≤ c ≤ d
↑ ↑ ↑ ↑

isOne : 0 1 0 1

6

Other example : Grph

Definition

Sort(Grph) = {V }
Rel(Grph) = {E � V × V }
Ax(Grph) = ∅

7

Extension of a theory

Definition
T extends T′ iff :

• Sort(T′) ⊆ Sort(T)
• Rel(T′) ⊆ Rel(T)
• Ax(T′) ⊆ Ax(T)

Definition
T is a relational extension of T′ iff :

• T′ is an extension of T
• Sort(T′) = Sort(T)

Note that there is a natural notion of projection from the extension to
the base theory. (i.e. the one that forgets the extra information)

8

Extension of a theory

Definition
T extends T′ iff :

• Sort(T′) ⊆ Sort(T)
• Rel(T′) ⊆ Rel(T)
• Ax(T′) ⊆ Ax(T)

Definition
T is a relational extension of T′ iff :

• T′ is an extension of T
• Sort(T′) = Sort(T)

Note that there is a natural notion of projection from the extension to
the base theory. (i.e. the one that forgets the extra information)

8

Generic form

Theorem (Generic Form)
Complexity class C is equal to set of extensions T of Str.

9

Generic form

Theorem (Generic Form)
Complexity class C is equal to set of extensions T of Str.

What does this mean ?

9

Generic form

Theorem (Generic Form)
Complexity class C is equal to set of extensions T of Str.

Logic

For every problem p ∈ C and for
every x ∈ p, we have at leat
one model of T that projects
onto x .

Computation

For every model m of T there is
a problem p such that x ∈ p

if and only m projects onto x .

10

Fagin’s Theorem (our version)

Theorem (Fagin (Boolean sauce))
NP is equal to the relational extensions of Str.

11

Sketch of the proof

Logical description

Given a NP Turing machine :
• Give a theory such that all

its finite models can project
to accepting runs of the
machine

• Is this a relational extension
of Str ? (without detail)

Decision algorithm

Given a relational extension of
Str

• Give a Turing machine
whose accepting runs are
models of the theory

• Is this a NP Turing
machine?

12

Logical encoding

13

Extending strings with table of symbols

Str + S,T + Symb0, Symb1, Symb� � T × S + (Stateq) � T

Axioms :
• S, T are finite chains

(equipped with successors
and max)

• Symb{0,1,�} form a
function from T × S to
{0, 1,�} and (Stateq) from
T to Q

• State q0 and blank symbols
� on work tape at time 0.
State accept at final state

i0 i1 i2 in−1 in

0 0 1 . . . 0 0
s1 s2 . . . sn−1 sn

t1 1 1 . . . 0 0 q0

t2 0 1 . . . 0 1 q
... . . .

...
tm−1 1 0 . . . 0 0 q′

tm 1 1 . . . 0 0 accept

14

Adding heads

Str + S,T + Symb{0,1,�}, (Stateq) + wHead � T × S + iHead � T ×N

Axioms :
• wHead (resp. iHead) are

functions from T to S

(resp. N)
• wHead and iHead don’t

move more than one case
• The work tape is unchanged

at positions where the head
is not found

i0 i1 i2 in−1 in

0 0 1 . . . 0 0
s1 s2 . . . sn−1 sn

t1 1 1 . . . 0 0 q0

t2 0 1 . . . 0 0 q
...

...
... . . .

...
...

...
tm−1 1 0 . . . 0 0 q′

tm 1 1 . . . 0 1 accept

15

Axioms for the transitions

. . . 0 1 . . .
c1

. . . 1 1 . . .
c2

. . . 0 1 . . .
c3

Φc1(t) ⇒ Φc2(t + 1) ∨ Φc3(t + 1)

16

Polynomiality

All Turing mahines are represented !

But #T is exactly the time of the Turing machine

17

Model checking
done fast

18

Computing a model of a theory

Given a relational extension of Str adding R1, . . . , Rp and axioms, we
give a machine M such that its accepting runs are exactly the models of
the extension :

Input : a model of Str of domain N

Poly.
verif. {
Nondet.
guess {

p subsets of N p subsets of N

. . .

p subsets of N p subsets of N

reject accept accept reject

19

