## An introduction to descriptive complexity

**IHPST 2024** 

November 15, 2024

Damiano Mazza, & Baptiste Chanus







## **Descriptive complexity:** languages and computations

#### Logical description

- Finite structures over finite signatures
- Logical ressources for expressivity (higher order quantifiers, operators)

#### **Decision algorithm**

- Models of computations (Turing machines, circuits)
- Computational ressources (Time, space)

## **Descriptive complexity: languages and computations**

#### Logical description

- Finite structures over finite signatures
- Logical ressources for expressivity (higher order quantifiers, operators)

#### **Decision algorithm**

- Models of computations (Turing machines, circuits)
- Computational ressources (Time, space)

Descriptive complexity

$$x \models F \iff x \in L$$



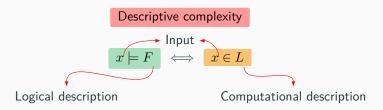
## **Descriptive complexity: languages and computations**

#### Logical description

- Finite structures over finite signatures
- Logical ressources for expressivity (higher order quantifiers, operators)

#### **Decision algorithm**

- Models of computations (Turing machines, circuits)
  - Computational ressources (Time, space)



## **Complexity Class**

#### **Definition**

A **problem** L (on *string*) is a set of strings on an alphabet  $\Sigma$ . We write  $L \subseteq \Sigma$ .

#### **Definition**

A **complexity class** is a set of problems that are solvable in *bounded* ressources (time, space...) in a given model of computations (Turing Machines).

## Our approach what's different ?

#### **Logical description** Boolean theories

- Finite models of <u>sorted first order</u> finite theories (adding axioms to signatures)
- Logical ressources (higher order quantifiers, operators) sorts and relations

#### **Boolean Theories**

#### Definition

A Boolean theory  $\ensuremath{\mathbb{T}}$  is a triple

$$(\operatorname{Sort}(\mathbb{T}), \operatorname{Rel}(\mathbb{T}), \operatorname{Ax}(\mathbb{T}))$$

A Boolean theory  $\mathbb T$  is **finite** if  $Sort(\mathbb T),\,Rel(\mathbb T)$  and  $Ax(\mathbb T)$  are all finite.

5

## **Example:** Str

#### Definition

$$Sort(Str) = \{N\}$$

$$Rel(Str) = \{ \le \rightarrowtail N \times N, isOne \rightarrowtail N \}$$

$$Ax(Str) = \{ " \le is a total order" \}$$

6

## Other example : $\mathbb{G}rph$

### Definition

$$Sort(\mathbb{G}rph) = \{V\}$$

$$Rel(\mathbb{G}rph) = \{E \rightarrowtail V \times V\}$$

$$Ax(\mathbb{G}rph) = \emptyset$$

## **Extension of a theory**

## Definition

 $\mathbb T$  extends  $\mathbb T'$  iff :

- $\operatorname{Sort}(\mathbb{T}') \subseteq \operatorname{Sort}(\mathbb{T})$
- $\operatorname{Rel}(\mathbb{T}') \subseteq \operatorname{Rel}(\mathbb{T})$
- $Ax(\mathbb{T}') \subseteq Ax(\mathbb{T})$

#### **Definition**

 $\mathbb{T}$  is a relational extension of  $\mathbb{T}'$  iff :

- lacksquare T' is an extension of  $\mathbb T$
- $\operatorname{Sort}(\mathbb{T}') = \operatorname{Sort}(\mathbb{T})$

## Extension of a theory

## Definition

#### $\mathbb T$ extends $\mathbb T'$ iff :

- $\operatorname{Sort}(\mathbb{T}') \subseteq \operatorname{Sort}(\mathbb{T})$
- $\operatorname{Rel}(\mathbb{T}') \subseteq \operatorname{Rel}(\mathbb{T})$
- $Ax(\mathbb{T}') \subseteq Ax(\mathbb{T})$

#### Definition

#### $\mathbb{T}$ is a relational extension of $\mathbb{T}'$ iff :

- $\mathbb{T}'$  is an extension of  $\mathbb{T}$
- $\operatorname{Sort}(\mathbb{T}') = \operatorname{Sort}(\mathbb{T})$

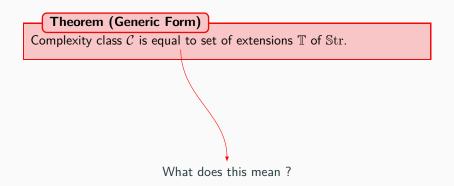
Note that there is a natural notion of projection from the extension to the base theory. (i.e. the one that forgets the extra information)

#### **Generic form**

## Theorem (Generic Form)

Complexity class  ${\mathcal C}$  is equal to set of extensions  ${\mathbb T}$  of  ${\mathbb S}{\rm tr}.$ 

#### **Generic form**



#### Generic form

#### Theorem (Generic Form)

Complexity class  $\mathcal C$  is equal to set of extensions  $\mathbb T$  of  $\mathbb S\mathrm{tr}.$ 

#### Logic

For every problem  $p \in \mathcal{C}$  and for every  $x \in p$ , we have at leat one model of  $\mathbb{T}$  that projects onto x.

#### Computation

For every model m of  $\mathbb T$  there is a problem p such that  $x \in p$  if and only m projects onto x.

## Fagin's Theorem (our version)

Theorem (Fagin (Boolean sauce))

NP is equal to the relational extensions of Str.

## Sketch of the proof

#### Logical description

#### Given a NP Turing machine:

- Give a theory such that all its finite models can project to accepting runs of the machine
- Is this a relational extension of Str ? (without detail)

#### **Decision algorithm**

Given a relational extension of  $\mathbb{S}\mathrm{tr}$ 

- Give a Turing machine whose accepting runs are models of the theory
- Is this a NP Turing machine?

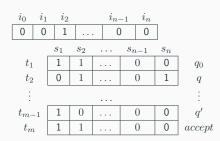
# Logical encoding

## **Extending strings with table of symbols**

$$\mathbb{S}\mathrm{tr} + \mathbf{S}\mathsf{,T} + \mathrm{Symb}_0, \mathrm{Symb}_1, \mathrm{Symb}_\square \rightarrowtail T \times S + (\mathrm{State}_q) \rightarrowtail T$$

#### Axioms:

- S, T are finite chains (equipped with successors and max)
- $\begin{tabular}{ll} $\operatorname{Symb}_{\{0,1,\square\}}$ form a function from $T\times S$ to $$\{0,1,\square\}$ and $(State_q)$ from $T$ to $Q$ \\ \end{tabular}$
- State q<sub>0</sub> and blank symbols
   □ on work tape at time 0.
   State accept at final state

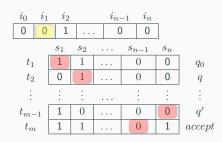


## **Adding heads**

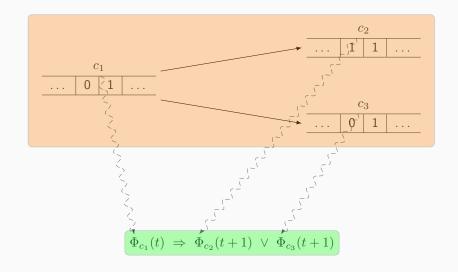
$$\mathbb{S}\mathrm{tr} + \mathbf{S}\mathsf{,T} + \mathrm{Symb}_{\{0,1,\square\}}, (\mathrm{State}_q) + \mathrm{wHead} \rightarrowtail T \times S + \mathrm{iHead} \rightarrowtail T \times N$$

#### Axioms:

- wHead (resp. iHead) are functions from T to S (resp. N)
- wHead and iHead don't move more than one case
- The work tape is unchanged at positions where the head is not found



## Axioms for the transitions



## **Polynomiality**

All Turing mahines are represented!

But #T is exactly the time of the Turing machine

# Model checking

done fast

## Computing a model of a theory

Given a relational extension of  $\mathbb{S}\mathrm{tr}$  adding  $R_1,\ldots,R_p$  and axioms, we give a machine M such that its accepting runs are exactly the models of the extension :

